博客
关于我
输入两个正整数m 和n,求其最大公约数和最小公倍数 (Java经典编程案例)
阅读量:733 次
发布时间:2019-03-22

本文共 1031 字,大约阅读时间需要 3 分钟。

输入两个正整数m和n,求其最大公约数和最小公倍数

在编程中,求两个正整数的最大公约数(GCD)和最小公倍数(LCM)是一个常见的问题。本文将详细介绍一种高效的求解方法。

思路分析

最大公约数可以通过辗转相除法来求解。具体步骤如下:

  • 在循环中,只要除数不等于0,继续执行。
  • 将较大的数除以较小的数,取余数。
  • 将余数作为新的较小的数,将原来的较小的数作为新的较大的数。
  • 重复上述步骤,直到较小的数为0,此时较大的数即为最大公约数。
  • 最小公倍数则可以通过公式:最小公倍数 = 两个数的乘积 / 最大公约数来计算。
  • 代码示例

    以下是实现上述方法的Java代码:

    public class Example {  
    public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("请输入正整数m的值:");
    int m = scanner.nextInt();
    System.out.print("请输入正整数n的值:");
    int n = scanner.nextLong();
    int a = division(m, n);
    int b = (m / a) * n; // 可以直接使用 m * n / a 来计算
    System.out.println(m + "和" + n + "的最大公约数为:" + a + ",最小公倍数为:" + b);
    }
    public int division(int x, int y) {
    int temp;
    while (y != 0) {
    temp = x % y;
    x = y;
    y = temp;
    }
    return x;
    }
    }

    执行结果

    运行上述代码并输入两个正整数,程序将输出它们的最大公约数和最小公倍数。

    总结

    通过上述方法和代码,我们可以快速且高效地求解两个正整数的最大公约数和最小公倍数。这种方法不仅适用于编程,还可以在数学计算中得到实际应用。

    转载地址:http://vezwk.baihongyu.com/

    你可能感兴趣的文章
    name_save matlab
    查看>>
    Nami 项目使用教程
    查看>>
    Nancy之基于Nancy.Hosting.Aspnet的小Demo
    查看>>
    NAND NOR FLASH闪存产品概述
    查看>>
    nano 编辑
    查看>>
    nanoGPT 教程:从零开始训练语言模型
    查看>>
    NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
    查看>>
    Nash:轻量级、安全且可靠的脚本语言
    查看>>
    NAS、SAN和DAS的区别
    查看>>
    NAS个人云存储服务器搭建
    查看>>
    NAS服务器有哪些优势
    查看>>
    NAT PAT故障排除实战指南:从原理到技巧的深度探索
    查看>>
    nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,解决动态域名解析难题
    查看>>
    natapp搭建外网服务器
    查看>>
    NativePHP:使用PHP构建跨平台桌面应用的新框架
    查看>>
    nativescript(angular2)——ListView组件
    查看>>
    NativeWindow_01
    查看>>